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Abstract with 

A general method of calculating the intensity of X-ray 
diffraction from small crystalline particles whose 
boundary is defined by a shape function is discussed. 
The intensity formula which is generally given by a 
double sum over the reciprocal-lattice points is 
simplified into the form of a single sum, using 'the 
random-shift treatment '  which assumes that the 
position of the boundary relative to the crystal lattice 
varies at random from crystal to crystal. By the use of 
Fourier theorems, the intensity formulas are also 
converted into a single sum over the direct lattice. 
Although the electron distribution in the particle has 
been defined in various ways by the shape function, a 
more reasonable expression of the electron density 
appropriate to small crystals is introduced. The 
intensity formulas derived on the basis of the new 
form of the electron density are compared with other 
intensity formulas which have so far been proposed. 

1. Introduction 

The effect of the external shape and the size of a 
crystal on X-ray diffraction intensity was first dealt 
with by Laue (1936) for a parallelepiped crystal having 
N i unit cells along the a i axis (i = 1, 2, 3), for which 
the diffraction intensity is expressed as 

IL(b) = IF(b)l 2 G(b), (1) 

0567-7394/79/010163-08501.00 

F(b) = Y. f~(b) exp(2zribr~), (2) 

sin 2 zrN 1 ~ sin 2 zrN 2 r/ sin 2 7L/V 3 

G(b) - sin 2 zr~ sin 2 nr/ sin 2 zrff ' (3) 

where F(b)  is the structure factor, G(b) the Laue 
function, f~(b) the atomic scattering factor of the ttth 
atom located at r,~ = x,~al + y,~a 2 + z a a  3 and b the 
scattering vector expressed as b = (a~ + r/a~ + (a3, a t 
being the reciprocal vectors. 

In order to treat small crystals of arbitrary shapes, 
Patterson (1939) and Ewald (1940) introduced the 
shape function s(r) defined by 

s(r) = [~ inside the crystal boundary 
outside the crystal boundary 

(4) 
and expressed the electron density in a small crystal as 

Pe(r) = Poo(r)s(r), (5) 

where poD(r) is the electron density of a perfectly 
periodic infinite crystal. As a Fourier transform of Pc(r), 
the amplitude of X-rays diffracted by the crystal is 
given as 

A e(b ) = ( l /v)  ~, F ( h ) S ( b -  h) 
h 
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(6) 
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with 

S(b) = f s(r) exp(2m'br)dr, (7) 

where S(b) is the shape factor of the crystal, v the 
volume of the unit cell and h = ha] + ka 2 + la; (h,k,h 
integers). 

Considering only one term in equation (6), James 
(1954) proposed, as an approximate intensity near 
point h, the formula 

IeS(b) = (l/v) 2 IF(h)l 2 IS(b-- h)l 2. (8) 

Guinier (1963) expressed the electron density as 

boundary. They derived the amplitude of the form 

a au(b) = (1/v)F(b) ~ S ( b -  h), (17) 
h 

from which, by the method of the ~ average (as so- 
called by them), they obtained the intensity formula 

lau(b) : (l/v) 2 I F(b)l 2 Z i S ( b -  h)l 2. (18) 
h 

In their final intensity formula, they replaced F(b) by 
F(h) and put it inside the summation as 

with 

Peu(r) ~ cell _ = Pe (~-  m)s(m) (9) 
m 

pceU (r) { P°°(r) inside the unit cell 
e = 0 outside the unit cell, (10) 

where m = m~ a~ + m z a 2 + m 3 a3 (mi: integer). Namely, 
pe,,(r) is the electron density in all unit cells whose cell 
origins lie inside the boundary. He derived the 
amplitude of the form 

Aeu(b)= (1/v)J-eu(b)7. S ( b -  h) (11) 
h 

with 

~-eu(b) = S peeen(r) exp(2m~ar)dr, (12) 

and obtained the intensity formula 

Ieu(b) = (l/v) 2 [~Z'eu(b)12 Z I S ( b -  h)l 2, (13) 
h 

by neglecting 

Z Z S (b - h)S" (b -- h'). 
h--/=h' 

Further, as an approximation for the region near point 
b, he replaced ~Teu(b ) with F(h) and proposed the 
intensity formula 

I~(b) = (1//3) 2 IF(h)t 2 Z I S ( b -  h')l 2. (14) 
h ,  

Hosemann & Bagchi (1962) expressed the electron 
density as 

pa.(r) Z c e l l -  
= p~ ( r -m)s (m) ,  (15) 

I n  

with 
ce l l  

ce l l  _x  p~ (~) = Y, U,~(r- r~), (16) 
o¢ 

where U~(r') is the electron distribution function of the 
ath atom at r,~ in a unit cell, the origin of r' being taken 
at the center of the atom; the sum is taken over all the 
atoms in the unit cell. The function p~,(r) represents all 
electron distribution belonging to all the atoms in those 
unit cells whose cell origins are contained within the 

H.B _ _  I~u ( b ) -  (l/v) 2 Z hF(h)S(b h)l 2. (19) 
h 

For an extremely large crystal, since S(b) 
approaches the 6 function 6(b), le s, l~a, and I ~  give the 
same result. For a very small crystal, however, they 
show intensity distributions substantially different from 
one another because S(b) has a relatively broad 
distribution near b = 0. Further, as will be pointed out 
in the next section, the electron distributions represen- 
ted by the functions Pc, Peu and P,~u are too artificial to 
be appropriate to very small crystals. In this respect, 
therefore, a new function Pa is introduced in the present 
study. It is shown that Pa may be a more realistic model 
of electron distributions for very small crystals. 
Intensity formulas corresponding to Pc, Peu, Pau and Pa 
are derived by the use of 'the random-shift treatment'. 
Calculations are performed either by the reciprocal- 
lattice sum or by the direct-lattice sum. The results 
obtained are compared and critically discussed. 

2. Four kinds of  electron density expression for a 
bounded crystal 

The electron density for a bounded crystal is charac- 
terized by the shape function s(r). The s(r) in equation 
(5) cut the finite part defined by the boundary from the 
infinite distribution of the electron density poo(r), while 
s(m) in equations (9) and (15) bounds the summation 
range of m. On the other hand, the new density 
distribution pa(r) which is now introduced can be 
characterized by saying that it is concerned not with 
lattice points but with atoms which lie inside the 
boundary. Namely, pa(r) can be expressed as 

Pa(r) = ~ U ~ ( r -  m -  r,,)s(m + r,~). (20) 
m t ~  

The characteristic features of the four density 
functions, Pc, Peu, Pau and Pa, are shown schematically in 
Fig. 1 for a two-dimensional hexagonal crystal having a 
circular boundary, assuming that each unit cell con- 
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tains two different atoms. These electron distributions 
differ from one another only near the boundary. 
However, since as seen in Fig. l(a) the distribution 
represented by Pe does not keep the integrity of the 
electron cloud belonging to each atom, it is clear that 
Pc(r) can hardly be a realistic electron distribution. The 
same also holds for Peu (Fig. lb). In addition, p~ for a 
given shape function' is accompanied by arbitrariness 
because Peu depends on the choice of the unit cell in the 
crystal concerned. As for pa,, although the integrity of 
the electron cloud about each atom is not destroyed, it 
is also accompanied by the arbitrariness due to the 
choice of the unit cell. On the other hand, the density 
f u n c t i o n  Pa represents an electron distribution consist- 
ing of whole atoms, and is independent of the choice of 
the unit cell. Compared with the other density func- 
tions, therefore, Pa may reproduce most reasonably 
and realistically the electron distribution in a very small 
crystal corresponding to a given shape function. 

It can be easily understood that there are the 
cell(r ,  cell _X following relations between poo(r), Pe ) Pa (rj 

and U~(r'): 

poo(r) Z peCell(r m) ~ cell - = -- = Pa ( r -  m) 
I111 n l  

= Z Z  Uot(r-- m -  r,~). 
m o t  

(21) 

Using the crystal lattice function as 

z(r) = Z J ( r -  m), (22) 
m 

and the relation s (m)  = f s(r)J(r - m)dr, one can 
transform pea(r) into a convolution form as follows: 

/ / /  / / / / / / r : / /  / 

(a) (b) / / / / 

/ / , 

- / /  / / / / / / 
(c) (d) 

Fig. 1. Electron density maps of (a) Pc, (b) Peu, (c) Pa. and (d) pa 
for a disk-shaped crystal. Broken lines show the boundaries 
specified by the shape function. 

p~u(r) E cell _ = Pe ( ' ~ -  m ) s ( m )  
I n  

--  ~ f ~cell(r r')3(r' m)s(r')dr' 
- -  - - ] Je  - -  - -  

m 

cell - fPe (r r')z(r')s(r')dr' cell _x = -- = Pe (r)*[z(r)s(r)], 

where gl(r)*g2(r), a convolution of g l ( r )  and g2(r), is 
defined as 

gl(r)*g2(r) = f g l ( r -  r')g2(r')dr'. (23) 

Similarly, Pc(r), pad(r) and pa(r) can be transformed into 
their convolution forms as follows: 

Pe(r) = ~ tUb(r)* z(r - r~)ls(r) (PEJ) (24) 

(Patterson, 1939; Ewald, 1940; James, 1954), 

oceil( 3" [z(r)S(r)] (G) (Guinier, 1963) (25) peu(r) = ,e ,r, 

cell [z(r)s(r)] (HB) (Hosemann & (26) Pau(r) = Pa (r )*  

Bagchi, 1962) 

Pa(r) = Y U~(r)* [ z ( r -  r,~)s(r)] (IM) (this work). (27) 
t ~  

3. X-ray diffraction amplitude for a bounded crystal 

The amplitude, A (b), of diffracted X-rays is given by 
the Fourier transform of the electron density function 
p(r), i.e. 

A(b)=  Fp(r) = fp(r) exp(2n/br)dr. (28) 

By use of the convolution theory, 

F[g~(r)*g2(r)] = Fg~(r). Fg2(r), (29) 

F[gl(r).g2(r)] = Fg~(r)* Fg2(r), (30) 

four A (b)'s corresponding to Pc, Peu, Pau and Pa can be 
derived: 

Ae(b) = • [FU~(r).Fz(r--  r~)]*Fs(r) (PEJ), (31) 
Q 

F~cell(r) [Fz(r)*Fs(r)] (G), (32) Aeu(b )=  Pe " 

A a u ( b ) =  Fp~eU(r) .[Fz(r)*Fs(r)]  (HB), (33) 

Aa(b) = ~ eU~(r). [Fz(r-- r,,)* Fs(r)] (IM). (34) 
o~ 

Fourier transforms and convolutions of the functions 
concerned are 

FU~(r) =f,~(b), Fs( r )=  S(b), (35) 

Fz(r -- d) = (l/v) exp(2zabd) ~ J(b - h), (36) 
h 

and then 

Fz(r--  d)* Fs ( r )=  (l/v) Z exp(2zcihd)S(b - h). (37) 
h 
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Thus, four A(b)'s can be rewritten as a reciprocal- 
lattice sum: 

A(b) = Z O(b,h)= (l/v) Y. S(b- -  h ) J -  (38) 
h h 

with 

J-e(h) = ~ f,~(h) exp(2m]lr,~) = F(h) (PEJ), (39) 
o~ 

cell ~'-eu(b) = fPe (r) exp(2m~ar)dr 

= Y. F(h)H(b -- h) (G), (40) 
h 

J ' a . (b )  = S fen(r) exp(2m~ar)dr 

= Y. f,,(b) exp(Zm~ar~) = r (b)  (HB), (41) 
o~ 

J~r'a(b,h) = Z f~(b)exp(Zn/hr,~)= V(b,h) (IM), (42) 
tit  

where 
sin(n0 sin(nr/) sin(n0 

H ( b -  h) = e "i(~+n+O - -  - - .  (43) 
n(~- h) n(rt- k) n(~- 0 

Equations (39), (40) and (41) are identical with (6), 
(11) and (17) respectively. For b = I1, these four J " s  
are all equal to F(h) but they generally differ from one 
another. J -e ,  J ' ~  and ~-~ can easily be calculated 
from atomic scattering factors, while J - ~  needs 
complicated calculations including integrals or series. 

For comparison, ~-(~O0)/(nZ), where Z is the 
atomic number and n the number of atoms in a unit 
cell, is calculated in the cases of monatomic s.c. (simple 
cube), b.c.c, and f.c.c, with a = 4 A, by the use of an 
approximate expression,f(~00), given by 

Z 
f (~O)  = =Ztp(O, (44) 

1 + y(~/a) 2 

where 
to(O = a2/(a 2 + ~2), (45) 

1.0 

0.8 

0.6 / \ 
/ 

o.4 / 

0.2~ / 

0 i/ 
1.5 210 

Pe - -  Peu 
P~ 1.0 ! - - -  Pau 

o.+ 

• 0 . 6  / ':' \ / ' 
, 0 .4 /  

0.2 

215 "~ 01.5 2.0 2.5 '~ 

(a) (b) 
Fig. 2. Comparison among ~r-'s of four types. (a) LJ-I/Z for s.c. 

and (b) I~-I/(nZ) for b.c.c, and f.c.c. 

with 122 = aZ/y. We obtain: 

for  s.c. 

,Fe(hO0)/Z = tp(h) (PEJ), 
~"eu(qr'oo)/z = (19(~r)[ COS(~q~) 

+ (~/12) sin(nO]e ~i~ (G), 
: a . ( ~ o o ) / z  = :-.(~O0,hO0) 

= ~o(O (HB and IM); 

for  b.c.c, andf.c.c. (the same for both) 

j~-e(hOO)/(nZ) = tp(h) for h even 

(= 0 for h odd) (PEJ), 

J~.(~OO)/(nZ) = e(O cos ( ~-~2 ) [ cos( ~-~2 ) 
' sin ( - ~ ) ] e  '~'t (G), + ~  

~,u(~OO)/ (nZ)= (0(O cos (-~-~t e '"'m (HB), 
\ z /  

J-a(~OO,hOO)/(nZ) = tp(0 for h even 

t (46) 

~- (47) 

(= 0 for h odd) (IM); 

where the formulas (B 1), (B2) in Appendix B are used 
for calculating 3-e,(~00). Curves for these I J - I / (nZ)  
are shown in Fig. 2(a) for s.c. and in Fig. 2(b) for b.c.c. 
and f.c.c, where y = 2/3 A 2 and hence 122 = 24 are used. 

4. Four types of intensity formulas and approximate 
forms 

The intensity of X-rays diffracted by a bounded crystal 
is derived from equation (38) as 

l(b)=A(b)A* (b)= ~ l O(b,h)l z + ~. ~. O(b,h)O'(b,h'). 
h h~h' 

(48) 

On deriving IeJ(b) in equation (8) and Ie,,(b) in equation 
(13), James and Guinier neglected the contribution 
from the last term in equation (48), considering that 
the overlap of two O's with different h' is small so 
that the last term may be negligible. Such a considera- 
tion, however, turns out to be invalid for very small 
crystals. Hosemann & Bagchi eliminated this term by 
using the method of '~-average'. On the other hand, 
this term can also be eliminated by the use of 'the 
random-shift treatment' method. This method is 
adopted throughout the present paper. As described 
in Appendix A, it is assumed in this treatment that 
the position of the crystal boundary relative to the 
crystal lattice varies at random and the intensity 
average over such random shifts gives the intensity 
observed from the crystal powder sample. 
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From A(b) in equation (38) and the ~r ' s  in equations 
(39)-(42), therefore, the following four types of 
intensity formula can be derived: 

Ie(b) = (l/v) 2 Z IF(h)S(b-- h)l 2 [= Iffun(b)l (PF_j), (49) 
h 

Ieu(b) = ( l / o )  2 IJ-eu(b)l  2 Z I S ( b - -  h)l 2 (G),  (50) 
h 

Using the relations ~ . h l H ( b  - -  i l ) 1 2  : 1 derived from 
(B3) in Appendix B, we have the relation as 

(1//)) 2 Z I S ( b -  h)[ 2 :  G(b).  (54) 
h 

By the use of equations (53) and (54), the following 
results are obtained: 

Iau(b)=(l/v)21F(b)12y IS(b-- h)12 (HB), (51) 
h 

Ia(b) = (l/v) 2 Y. I F(b,h)S(b-- h)l 2= Ia~M(b) (IM), (52) 
h 

where equations (50) and (51) are identical to (13) and 
(18) respectively. 

Hosemann & Bagchi replaced F(b) by F(h) in their 
equation (51) and put it inside the summation over h as 
in their final form I~n(b) in equation (19) which is 
identical to equation (49). In other words, they at first 
adopted pan(r) as the electron density function but 
finally replaced pau(r) by Pc(r). As will be seen later, 
IL(b) in equation (1) derived by Laue is found to be a 
special case of Iau(b) for a parallelepiped crystal [see 
equation (55)1. 

An approximate form near point h in equation (8) 
derived by James is identical with a single term h in the 
summation of equation (49). Another approximate 
form of equation (14) derived by Guinier is obtained 
from Ie~(b) in equation (50) by replacing ~'-eu(b) with 
F(h). This replacement means, as seen in Fig. 2(a), (b), 
that the hill-shape curve with a peak shift from ~ = 2 is 
replaced by a straight line. Such a replacement may not 
be allowed for a very small crystal. 

Since S(b) is a maximum at b = 0 and appreciable in 
the volume of the order of 1/V (V is the volume of the 
crystal) around b = 0 and J ' s  are generally different 
from one another except for b = h, the differences 
between I e (= I~n), Ie,,, Iau , Ira u, ISe and I°eu become more 
appreciable as the crystal size becomes smaller, though 
they are all equal to (V/v) 2 IF(h)l 2 at b = h. 

Ie(b) = G(b) Y. I F(h)H(b -- h)[2 [= IaHuB(b)l, (55) 
h 

Im,(b) = G(b)13-e,(b)l 2 = G(b)l Z F(h)H(b -- h)[ 2, (56) 
h 

Iau(b ) = G(b)lF(b)12 [= IL(b)], (57) 

Ia~r(b) = G(b) Z I F(b,h)H(b-- h)l 2, (58) 
h 

IS(b) = G(b)lF(h)H(b - -  h)l 2 near point h, (59) 

/flu(b) = a(b)lF(h)l 2 near point h. (60) 

Laue function G(b) is a common factor in these 
formulas; the second terms characterize the feature of 
each of them. 

For a cube-shaped crystal (N~ = N 2 = N 3 = 2) with 
the cubic structure as treated in § 3, a normalized 
intensity J ( 0  = I(~00)/1(000) can be expressed, by the 
use o f f (~0)  in equation (44), as follows: 

J(O = cos2(TtO.B(O, (61) 

where B(O's are the normalized second terms of 
equations (55)-(60): 

for  s.c. 

B~(O = ~o2(011 + [25/(7ra2)1~o(0 sin(21rO 

+ tr(O sinE(nO}, (62) 

Beu(0 = ~02(0[cos(Tr0 + (f/a) sin(TrO] 2, (63) 

Ba,,(0 = BtU(0 = BL(0 = ~02(0, (64) 

J ne(~" ) = ~2(h) sin2(Tr0/tTr2(~ - h)2l near ~ =  h, (65) 

5. Four types of intensity formulas and two 
approximate forms 

In order to compare four types of intensity formulas, 1 e 
(= l~ff), Ie~, Iau, and Ira u, and also two approximate 
forms, Ie s and Ie°u, they are calculated for a parallele- 
piped crystal having N i unit cells along the a i axis. In 
this case, the shape factor S(b - h) in equation (7) can 
easily be calculated as 

(1/v)21S(b--h)12=G(b)lH(b--h)12.  (53) 

B ~ ( 0  = ~2(h) near ~=  h; (66) 

for  b.c.c, and f.c.c. 

B e ( ~ r )  = ~p2(q~) COS 2 + ~ s i n ( n O  

+ 2tr(O sin2 ( - ~ ) ] ,  (67) 

, 
+ - sin , (68) 

a 



B°.(C)=Bf,  M(C)=B"(¢) = ~02(0 cos= (-~), (69) 

(72) 

BS(O = ~02(h) sin2(nO/bz2(¢ - h) 21 

B~,,(0 -- ~2(h) near ¢ =  h even, 

in which 

a21  [ l(p(~) ] a(~) = -z~-- + 4 8~0(~) , 

near ¢ = h even, 

(70) 

(71) 

(a) and formulas (B1)-(B4) in Appendix B are used for 
calculating B e . 

The functions B ( 0  and J(~) calculated with a = 4/k ,  
y --- ] A 2 and a 2 = 24 are plotted in Fig. 3. Although 
all the B(~ ' s  have the same value at ~ = 2, they have 
features quite distinct regarding the degree of symmetry 
with respect to the coordinate ~ = 2 and also regarding 
the sharpness of the curve. Be°u and Be s are symmetric 
while Beu has a high peak at ~ larger than 2. As 
expected from the character of each B(~), as seen in 
Fig. 3(b) and (d), the J ( ~ ' s  show features substan- 
tially different from one another with respect to the 
positions and half-widths of the intensity peaks, 
though they have all the same values at ~ = 2. The 
difference of Jeu(O from jL(© is the most con- 
siderable. The two curves for Je,, and jL are compared 
for the range 0 < ~ < 6.5 in Fig. 4. 

. . . . .  4,g,~ 
' ° ° ° ° ° ° ° ' ° ' ° °  / e u  

/ , . , I o ,  Z L 

0.6 : • 
/ /  

0.4 / - - -\ 

0.2 :" \ 

0 ..," I 

1.5 2.0 2'.5 

__.__are s 
- - ° ° - -  

0.8 

0.6 

0.4 

0.2 

0 

.° ' , ,  

I 

1.5 2.0 2.5 ¢ 

(b) 

0.2 

1.5 

0.8 

0.6 

0.4 

0.2 

0.8 . - . . °  

. . . . .  ~ " -  0.6 

/ /  ~ 0.4 

./ 0.2 
/ 

, 0 
1.5 2.0 2.5 

t 

2.0 2.5 ¢ 
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(e) ( 4  
Fig. 3. Comparison of intensity formulas of four types and 

approximate forms. (a) B and (b) J for s.c. and (c) B and (d) J 
for b.c.c, and f.c.c, having cubic shape whose edges are 2a (a is 
the lattice constant). 

6 .  D i r e c t - l a t t i c e - s u m  e x p r e s s i o n  

Since the intensity derived in §4 is expressed as a 
single sum over h in the form of I(b) = Y h~'(b,h),  
it can be rewritten as a single sum over m by the use 
of Poisson's summation formula (Lighthill, 1958) as 
follows: 

I ( b )  = Z J ( b , h )  = v ~ u(b,m), (73) 
h m 

where 

u(b,m) = f J ' (b ,b ' )exp( -Znib 'm)db ' .  (74) 

Relations necessary for the calculations are 

J" IS(b) l z exp(-2m'br)db = S s(r')s(r'  + r)dr' 
= 7 : ( r ) =  7 : ( - r ) ,  (75) 

f~(b)ff~.(b) = f [U,,(r)* U#(-r)] exp(2a'/br)dr, (76) 

where 7 :  (r) is the volume common to the two boun- 
daries shifted by r. By the use of these relations, the 

1.0, ! jL 

0.8 ' - . -  Jeu 

o.6! i 
o.4i A/ ., 

o.2 t/i 1//1//:, , ;\ 
O0 2 3 4 5 6 ~ 

(a) 

1.0 jL  

0.~) - ' -  Jeu 

0.6 

0.4 

2 0.2 _ ~  
~X,/N /x, , :-~, 

O0 1 2 3 4 5 6 ~  
(b) 

Fig. 4. Comparison of the intensity formulas jL with Je,, (a) for a 
s.c. crystal and (b) for b.c.c, and f.c.e, crystals having a cubic 
shape whose edges are 2a. 
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four I(b)'s in equations (49)-(52) can be transformed 
as follows: 

APPENDIX A 
Random-shift treatment 

1 
Ie(b) = -  ~ Z f  [U~(r)* Ua(--r)] Y~/-(r + m + r~ 

l) a ~ m 

x exp[2m~(r + m + r,, -- r#)]dr, 

1 
Ieu(b) = -- I~-eu(b)l 2 Z :~P(m) exp(2zribm), 

v m 

-,p 

(77) 

(78) 

1 
Iau(b) = - I F(b)l 2 Z ~P(m) exp(2n/bm), (79) 

V m 

1 
Iy (b )  = -  Y. Y. f,~(b)f~* (b) Z ~/'(m + r ~ -  r~) 

V a ~  m 

x exp[2m'b(m + r ,~-  r)] .  (80) 

~ " s  in equations (77)-(80) have the shape effect on the 
diffraction intensity and restrict the ranges of the 
summations over m, a and fl because 7/'(r) is zero if I rl 
is larger than the crystal size, as seen from equation 
(75). The smaller the crystal, the less the number of 
terms to be taken account for the intensity calculation. 

The direct-lattice sums in equations (77)-(80) are 
mathematically identical with the reciprocal-lattice 
sums in equations (49)-(52), respectively, but the 
direct-lattice sum is more convenient for smaller 
crystals. 

As a bounded crystal treated in § 2, let us consider 
the case where the origin O of the lattice does not 
coincide with the origin O' suitable for describing 
s(r), and denote ~ = L. In this case, the selection 
function z(r)s(r) = Z m  s(r)J(r -- m) used in deriving 
equations (24)-(27) should be replaced by 

z ( r -  L)s(r)= Y. s(r)c~(r- L -  m). (.41) 
l i t  

Thus, the electron density of the shifted crystal can be 
derived from equations (24)-(27) by replacing z(r) with 
z ( r -  L): 

Pe(r,L) = Z [U,~(r)*z(r-- L- -  r~)]s(r), (A2) 
o~ 

Peu(r,L) = pcen(r)*[z(r- L)s(r)], (A3) 

Pau(r,L) = p~eti(r)*[z(r- L)s(r)], (A4) 

Pa(r,L) = Y. U,~(r)* t z ( r -  L -  r,~)s(r)]. (A5) 
o¢ 

By the use of equation (36) and q~(b,h) in equation 
(38), the amplitude derived from p(r,L) is found to be: 

A(b,L) = Z qJ(b,h) exp(27~ihL), (.46) 
h 

7. Conclusion from which the corresponding intensity is: 

The electron density Pa proposed by the present authors 
is the most adequate and, thus, the intensity expression 
1 a is the most reliable. The intensity is expressed in 
alternative ways, one in direct space and the other in 
reciprocal space; i.e. 

I1aM(b) = ( ! )  2 ~" l F(b'h)S(b h)12 

-- 1 
-- - ~ ~ fo,(b)f~* (b) ~ ~/'(m + r~ 

V a /3 m 

x exp[2m~o(m + r ~ -  r~)]. 

(81) 

- - r )  

(82) 

The direct-lattice sum is more convenient for a small 
crystal, while the reciprocal-lattice sum is more 
advantageous for a large crystal. These forms are 
successfully applied to the calculation of a number of 
examples of the intensity profiles for small crystallites. 
The details are reported in the following paper (Minami 
& Ino, 1979). 

I(b,L) = A(b,L)A*(b,L) = ~ I ~(b,h)l 2 
h 

+ Y z~ q~(b,h)~*(b,h') exp[2zci(h- h')Ll. (A7) 
h C h '  

In this expression, it is found that I(b,L) shows the 
same periodicity as that of the lattice with respect to L. 

A set of lattice points in an unshifted crystal, another 
set of those in the crystal shifted by L and their 
superposition are shown in Figs. 5(a), (b) and (c) 
respectively. Even for the crystal specified by a given 
shape function, as seen from the figures, the number 
and arrangement of lattice points in the crystal 
generally vary with the value of L, retaining the lattice 
periodicity. The variation of the point set takes place 
relating to points near the boundary; the lattice points 
in the vicinity of the center O make a common set to all 
crystals independently of the vector L. 

For the actual crystalline sample composed of small 
crystals with a definite shape, L may be considered to 
vary from crystal to crystal with some probability, so 
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that the intensity from the sample should be statis- 
tically averaged• Although this probability is difficult to 
estimate in general, it may be practical to assume 
simply that the probability is uniform, i.e. L occurs 
randomly. In this case the intensity may be averaged 
with respect to the ' random shift' of L over one period 
of the lattice• By this treatment, the last term in I(b,L) 
in equation (,4 7) is found to vanish and we have 

I(b) = ( l /v)  f I(b,L)dL = ~. I ~(b,h)l 2, (,4 8) 
[vl h 

which is the same as the first term in equation (48). 
Thus, the intensity expressed by the double sum over h 
and h' is reduced to that of a single sum over h by this 
'random-shift treatment'• 

For a large crystal, since the number of atoms near 
the surface is small compared with that in the common 
set of atoms near the center, the change in L has only a 

• • • • • • 

• , . '~ , : ~ . . .  . :  . . . . .  : .  
• ,<3 o o G . .  

"" '*  * * * ' " "  B o & 
~ * * * * ' ,  ioo ?° , ; " ,  0 0 i" 

• ' ~ ¢r ¢~ O r , , .  ". 0 0 0 ,:' 
• "-.~r ¢t ~ . . ' .  " ." 

. . . . . . .  " " ' -  O _ _ O - - "  

(a)L=0 N=19 (b) L:/: 0 N =  18 
• • • • • • 

• ! , e  , ' e  re'J" 

• " Q _  D - " .  

(c) 

Fig. 5. Sets of lattice points specified by (a) L = 0 and (b) L :~ 0 
for a disk-shaped crystal. N is the number of lattice points inside 
the boundary specified by s(r). (c) The superposition of the above 
two sets. Asterisks and open circles show the lattice points 
inside the circular boundary for L = 0 and L ~e 0 respectively. 
Small points show lattice points outside the boundary. Broken 
lines show the circular boundaries. 

negligible effect on the intensity• On the other hand, for 
an extremely small crystal the effect of L becomes 
appreciable• When 'the random-shift treatment' men- 
tioned above is applied, the same intensity form given in 
equation (A8) is obtained for small as well as large 
crystals• 

A P P E N D I X  B 
M a t h e m a t i c a l  f o r m u l a s  

oo 1 

X a - - - ~  - n cot(ha), 
h = - - o o  

E a2 + h2 - coth(na) ~ _ - -  
h =  --oo 

oo 1 ~z 2 

X ( a -  h) 2 sin2(z~a) ' 
h = - o o  

(B1) 

7t 

for a > 2, (B2) 
( t  

1 7~ 

coth(na) + 
h : - - o O  ( a 2  q- h2)2 2a3 sinh2(na) 

(B3) 

7~ 

fo ra  > 2. (B4) 
2a a 
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